Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2026
-
Sodium metal has emerged as a candidate anode material in rechargeable batteries owing to its high theoretical capacity, low standard reduction potential, and abundance in the earth's crust. Prior to practical deployment, it is critical to thoroughly assess sodium's mechanical properties, as to fully understand and thus help mitigate potential failure mechanisms. Herein, we examine the fracture behavior of sodium metal through tensile tests in an inert environment. We find that sodium is nearly insensitive to flaws (crack-like features), i.e. , its effective strength is virtually unaffected by the presence of flaws. Instead, under tension, sodium exhibits extreme necking that leads to eventual failure. We also characterize the microstructural features associated with fracture of sodium through scanning electron microscopy studies, which demonstrate several features indicative of highly ductile fracture, including wavy slip and microvoid formation. Finally, we discuss the implications of these experimental observations in the context of battery applications.more » « less
-
Advances in three-dimensional nanofabrication techniques have enabled the development of lightweight solids, such as hollow nanolattices, having record values of specific stiffness and strength, albeit at low production throughput. At the length scales of the structural elements of these solids—which are often tens of nanometers or smaller—forces required for elastic deformation can be comparable to adhesive forces, rendering the possibility to tailor bulk mechanical properties based on the relative balance of these forces. Herein, we study this interplay via the mechanics of ultralight ceramic-coated carbon nanotube (CNT) structures. We show that ceramic-CNT foams surpass other architected nanomaterials in density-normalized strength, and that when the structures are designed to minimize internal adhesive interactions between CNTs, >97% strain after compression beyond densification is recovered. Via experiments and modeling, we study the dependence of the recovery and dissipation on the coating thickness, demonstrate that internal adhesive contacts impede recovery, and identify design guidelines for ultralight materials to have maximum recovery. The combination of high recovery and dissipation in ceramic-CNT foams may be useful in structural damping and shock absorption, and the general principles could be broadly applied to both architected and stochastic nanofoams.more » « less
-
Refractory multiprincipal element alloys (MPEAs) are promising materials to meet the demands of aggressive structural applications, yet require fundamentally different avenues for accommodating plastic deformation in the body-centered cubic (bcc) variants of these alloys. We show a desirable combination of homogeneous plastic deformability and strength in the bcc MPEA MoNbTi, enabled by the rugged atomic environment through which dislocations must navigate. Our observations of dislocation motion and atomistic calculations unveil the unexpected dominance of nonscrew character dislocations and numerous slip planes for dislocation glide. This behavior lends credence to theories that explain the exceptional high temperature strength of similar alloys. Our results advance a defect-aware perspective to alloy design strategies for materials capable of performance across the temperature spectrum.more » « less
An official website of the United States government
